29 research outputs found

    1-PAGER: One Pass Answer Generation and Evidence Retrieval

    Full text link
    We present 1-Pager the first system that answers a question and retrieves evidence using a single Transformer-based model and decoding process. 1-Pager incrementally partitions the retrieval corpus using constrained decoding to select a document and answer string, and we show that this is competitive with comparable retrieve-and-read alternatives according to both retrieval and answer accuracy metrics. 1-Pager also outperforms the equivalent closed-book question answering model, by grounding predictions in an evidence corpus. While 1-Pager is not yet on-par with more expensive systems that read many more documents before generating an answer, we argue that it provides an important step toward attributed generation by folding retrieval into the sequence-to-sequence paradigm that is currently dominant in NLP. We also show that the search paths used to partition the corpus are easy to read and understand, paving a way forward for interpretable neural retrieval.Comment: Accepted at EMNLP 2023 (Findings

    NAIL: Lexical Retrieval Indices with Efficient Non-Autoregressive Decoders

    Full text link
    Neural document rerankers are extremely effective in terms of accuracy. However, the best models require dedicated hardware for serving, which is costly and often not feasible. To avoid this serving-time requirement, we present a method of capturing up to 86% of the gains of a Transformer cross-attention model with a lexicalized scoring function that only requires 10-6% of the Transformer's FLOPs per document and can be served using commodity CPUs. When combined with a BM25 retriever, this approach matches the quality of a state-of-the art dual encoder retriever, that still requires an accelerator for query encoding. We introduce NAIL (Non-Autoregressive Indexing with Language models) as a model architecture that is compatible with recent encoder-decoder and decoder-only large language models, such as T5, GPT-3 and PaLM. This model architecture can leverage existing pre-trained checkpoints and can be fine-tuned for efficiently constructing document representations that do not require neural processing of queries.Comment: To appear at EMNLP 202

    MICK: A Meta-Learning Framework for Few-shot Relation Classification with Small Training Data

    Full text link
    Few-shot relation classification seeks to classify incoming query instances after meeting only few support instances. This ability is gained by training with large amount of in-domain annotated data. In this paper, we tackle an even harder problem by further limiting the amount of data available at training time. We propose a few-shot learning framework for relation classification, which is particularly powerful when the training data is very small. In this framework, models not only strive to classify query instances, but also seek underlying knowledge about the support instances to obtain better instance representations. The framework also includes a method for aggregating cross-domain knowledge into models by open-source task enrichment. Additionally, we construct a brand new dataset: the TinyRel-CM dataset, a few-shot relation classification dataset in health domain with purposely small training data and challenging relation classes. Experimental results demonstrate that our framework brings performance gains for most underlying classification models, outperforms the state-of-the-art results given small training data, and achieves competitive results with sufficiently large training data

    Calibrating Likelihoods towards Consistency in Summarization Models

    Full text link
    Despite the recent advances in abstractive text summarization, current summarization models still suffer from generating factually inconsistent summaries, reducing their utility for real-world application. We argue that the main reason for such behavior is that the summarization models trained with maximum likelihood objective assign high probability to plausible sequences given the context, but they often do not accurately rank sequences by their consistency. In this work, we solve this problem by calibrating the likelihood of model generated sequences to better align with a consistency metric measured by natural language inference (NLI) models. The human evaluation study and automatic metrics show that the calibrated models generate more consistent and higher-quality summaries. We also show that the models trained using our method return probabilities that are better aligned with the NLI scores, which significantly increase reliability of summarization models

    New Protocols and Negative Results for Textual Entailment Data Collection

    Full text link
    Natural language inference (NLI) data has proven useful in benchmarking and, especially, as pretraining data for tasks requiring language understanding. However, the crowdsourcing protocol that was used to collect this data has known issues and was not explicitly optimized for either of these purposes, so it is likely far from ideal. We propose four alternative protocols, each aimed at improving either the ease with which annotators can produce sound training examples or the quality and diversity of those examples. Using these alternatives and a fifth baseline protocol, we collect and compare five new 8.5k-example training sets. In evaluations focused on transfer learning applications, our results are solidly negative, with models trained on our baseline dataset yielding good transfer performance to downstream tasks, but none of our four new methods (nor the recent ANLI) showing any improvements over that baseline. In a small silver lining, we observe that all four new protocols, especially those where annotators edit pre-filled text boxes, reduce previously observed issues with annotation artifacts.Comment: To appear at EMNLP 202
    corecore